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• D: Adiabatic Compression from volume V4 to volume V1. During this process, the temperature of
the gas increases from Tc back to Th. Analogously to step B, we find the work done on this leg to be:

WD = −∆U = −f
2
Nk(Th − Tc) < 0.

The gas does work on the piston.

The total work done in one cycle of the Carnot Engine’s operation is the sum WA +WB +WC +WD. After
a bit of algebra, you can find

WT = −Nk
[
Th log

(
V2

V1

)
+ Tc log

(
V4

V3

)]
. Now the adiabatic relations appropriate for steps B and D are:

ThV
γ−1
2 = TcV

γ−1
3

TcV
γ−1
4 = ThV

γ−1
1

These imply the relation (V1/V2) = (V4/V3) which allows us to simplify the total work expression:

WT = −Nk log

(
V2

V1

)
(Th − Tc) < 0.

The gas does work on the piston!

14 Free Energy and Thermodynamic Potentials

Notes not available.

15 Boltzmann Factor and the Partition Function

Ω is too hard to calculate for all but a handful of systems. I’m sure there are others for which one can
straightforwardly find Ω, but I only know of the ones we’ve worked with: the ideal gas, the two-state paramagnet,
the isolated H-atom, and the quantum harmonic oscillator. So, if we didn’t have another approach to statistical
mechanics, we would have no fundamental insights into most systems. We would only be able to operate at the
“chemistry level” of measuring enthalpies and extrapolating entropies and specific heats. etc. As physicists,
we’d like to be able to calculate S from first principles for all systems. Fortunately there is an alternative to
starting with the multiplicity function. It is the partition function.

Question: What is the probability of finding a system in a given macrostate when the system is in thermal
equilibrium with a reservoir at temperature T and total energy U0?

Answer: One of the most difficult derivations in physics. However, we can heuristically arrive at the correct
answer: For concreteness, take the system to be an atom with discrete energy states En. Let P (E1) be the
probability that the atom is in state E1, and P (E2) be the probability that the atom is in state E2. Now,
P (E1)/P (E2) = Ω1/Ω2. Since, S = k log Ω, we have Ωn = exp(Sn/k). The entropy of the atom is the entropy
of the reservoir SR at energy U0 − En. The ratio of probabilities is then

P (E1)

P (E2)
=
eSR(U0−E1)/k

eSR(U0−E2)/k
=
eS

(1)

R
/k

eS
(2)

R
/k

If the reservoir’s temperature is constant, as the atom exchanges small amounts of heat with it, then
dSR = −dU/T , so we have the important result that the ratio of probabilities of the atom being in the states
E1 and E2 is

P (E1)

P (E2)
= e−(E1−E2)/kT

What about the absolute probability of the atom being in state E1. Clearly the relative probability is
e−E1/kT , so to find the absolute probability of being in that state, I’d want to normalize by the sum of all the
relative probabilities:

P (E1) =
e−E1/kT∑
n e
−En/kT
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Definitions: The relative probability e−En/kT is called the Boltzmann Factor. The sum over all relative
probabilities is called the Partition Function, Z. The probability of a system being in state En is then

P (En) =
1

Z
e−En/kT

Average Values: For a function f(x) with probability distribution P (x), the average value of the function,
< f > will be given by

< f >=
∑
n

f(xn)P (xn) =
1

Z

∑
n

f(xn)e−βEn

where β ≡ 1/kT .
Example: Quantum Harmonic Oscillator: Recall that the microscopic energy of an individual QHO is

given by En = 1
2 h̄ω + nh̄ω. The partition function for this system is then

ZQHO =

∞∑
n=0

= e−β(n+ 1
2 )h̄ω = e−

1
2βh̄ω

∞∑
n=0

e−βnh̄ω.

Let’s define x ≡ βh̄ω, so that

Z = e−x/2
∞∑
n=0

e−nx

. That sum should look familiar. It can be shown that it has the closed form expression

∞∑
n=0

e−nx =
1

1− e−x
.

. Making use of the observation that sinhx ≡ (ex − e−x)/2, we find

Z =
1

2 sinh
(
βh̄ω

2

)
The temperature dependence of the total energy can be found using the relation for the average or expectation

value of a function:

Z < U > =

∞∑
n=0

(
n+

1

2

)
h̄ωe−β(n+ 1

2 )h̄ω

=

[ ∞∑
n=0

nh̄ωe−βnh̄ω +

∞∑
n=0

1

2
h̄ωe−βnh̄ω

]
e−βh̄ω/2

=
x

2β
e−x/2

[
2

∞∑
n=0

ne−nx +

∞∑
n=0

e−nx

]

=
x

2β
e−x/2

[
1 + e−x

(1− e−x)2

]
.

In the last step, I used the following useful trick:

d

dx

∞∑
n=0

e−nx = −
∞∑
n=0

ne−nx

⇒
∞∑
n=0

ne−nx = − d

dx

1

1− e−x
=

1

(1− e−x)2

Dividing by Z, we find the total internal energy < U >= U to be

UQHO =
h̄ω

2

eβh̄ω + 1

eβh̄ω − 1

High Temperature Approximation At high temperature eβh̄ω ≈ 1 + βh̄ω + O(βh̄ω)2. Applying this
expansion to the numerator and denominator, we find that the high temperature behavior of the total internal
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energy U is linear in T : U(kT >> h̄ω) ≈ kT . Heat Capacity of the QHO To calculate the heat capacity of
an Einstein Solid consisting of N QHO’s, we follow the prescription CV = (∂U/∂T )V :

CV =

(
∂U

∂T

)
V

=
∂β

∂T

(
∂U

∂β

)
V

= −Nkβ2

(
∂U

∂β

)
V

= −Nkβ2(h̄ω)2

[
−eβh̄ω

(eβh̄ω − 1)2

]
= Nk(βh̄ω)2 eβh̄ω

(eβh̄ω − 1)2

You should verify that the low temperature behavior of the heat capacity is

CV ∝
1

T 2
e−h̄ω/kT .

A Useful Relation For any system with microscopic energy spectrum E(s) there is a useful relation for
calculating the total energy U Notice that ∂Z/∂β = −

∑
sE(s)e−βE(s) = −Z < U >. The handy result is then:

< U >= − 1

Z

∂Z

∂β

Another Example: Two-state paramagnet For a two-state paramagnet with microscopic energy spectrum
given by E(s) = (−µB,+µB), the partition function is:

Z =
∑
s

e−βE(s) = eβµB + e−βµB = 2 cosh(βµB).

Using the relation for U above, we find the temperature dependence of the total energy to be:

U = − 1

Z

∂Z

∂β
= −µB tanh(βµB)

The magnetization is M = −U/B = µ tanh(βµB). What is the probability of the paramagnet being in the
energy state −µB? P (−µB) = (1/Z)eβµB = (1 + e−2βµB)−1

These results are the same as we found earlier using the much more calculation-intensive process based on
the multiplicity function Ω.

Hydrogen Atom: The energy levels in the hydrogen atom are given by En = −K/n2 where K = 13.6 eV
is the Rydberg constant. The full quantum state of the hydrogen atom is determined by the set of quantum
number (n, l,m) where n = 1, 2, 3, . . . is the principle quantum number, l = 0, 1, 2, . . . , n − 1 is the orbital
angular momentum quantum number, and m = −l,−l+ 1, . . . , l is the spin quantum number. For each value of
n there are n2 pairs of allowed (l,m) so, we say the energy level degeneracy in the hydrogen atom is g(n) = n2.
For degenerate systems, each quantum state contributes to the partition function according to

Z =
∑
s

g(s)e−βE(s)

For the hydrogen atom, we have Z =
∑
n n

2e+βK/n2

. It is easy to show that this sum does not converge.
The explanation is a bit subtle, but can be understood in the following two ways.

Practical explanation: The difference between ionization energy and the energy of the hydrogen atom in the
nth state is 13.6/n2 eV. This energy difference is tiny for n > 10 or so. A hydrogen atom in the n = 10 state
is going to be ionized by thermal fluctuations at most relevant temperatures. So, from a practical perspective,
the hydrogen partition function need not include terms past n = 10 or so.

More subtle explanation: The radius of the nth hydrogen orbit scales as n2. Beyond n = 103 or so, the
radius of the hydrogen atom, rn = n2a0 (a0 = 0.5 × 10−10m) approaches macroscopic size. At n = 104, the
hydrogen atom is a centimeter in diameter. The correspondence principle requires that quantum laws of motion
give way to classical laws of motion so that it is not valid to carry out the partition sum over the energy levels
En = −K/n2 into the classical regime.

Rotation of Diatomic Molecules The text considers the rotational partition function Zrot for diatomic
molecules. First consider molecules with distinguishable (different) atoms such as CO, HCl, etc. Rotational
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energies for these systems are given by E(j) = j(j + 1)ε wherej = 0, 1, 2, . . . is the rotational quantum number
and ε is a constant with units of energy. The degeneracy of these levels is g(j) = 2j+ 1. The partition function
for a rotational system is thus

Zrot =
∑
j=0

(2j + 1)e−βεj(j+1).

When the rotational energy level spacing is much smaller than the thermal energy scale kT , we can replace the
sum above with an integral by treating the rotational quantum number j as a continuous variable:

Zrot ≈
∫ ∞

0

(2j + 1)e−βεj(j+1)dj.

A variable substitution x ≡ j(j + 1)εβ yields

Zrot ≈
1

εβ

∫ ∞
0

e−xdx =
kT

ε

for kT >> ε. Average rotational energies are easily obtained in this high temperature limit:

Ē = − 1

Z

∂Z

∂β
= 1/β = kT

for kT >> ε.
If the atoms are identical, rotations of π produce identical states so the partition function over counts by a

factor of 2, and the correct high temperature rotational partition function for diatomic molecules like H2 and
O2 is Zrot = kT/2ε.

Equipartition
Here we show that the equipartition theorem comes directly out of the partition function for a free particle.

The equipartition theorem tells us that each degree of freedom that appears quadratically in the total energy
of a particle in thermal equilibrium with its environment contributes an average energy kT/2 to the particle’s
total average energy.

The free particle of mass m has the classical energy E = p2/2m. The partition function is

Zf =
1

h3

∫
d3~r

∫
d3~pe−βp

2/2m. (74)

The spatial part is easily integrated to get the (arbitrary) total volume, V . What remains is a product of
three Gaussian integrals:

Zf =
V

h3

(∫
dpe−βp

2/2m

)3

= V

(√
2πm

β

)3

= V

(
2πmkT

h2

)3/2

=
V

VQ
,

where VQ is the “quantum volume” (h2/2πmkT )3/2. The free particle partition function is expressed as the
ratio of the physical (arbitrary) volume to a volume that can be interpreted as the box with dimensions equal
to the deBroglie wavelength of the particle.

16 Maxwell Speed Distribution

The Maxwell distribution describes the relative probabilities for particle velocities in a gas. The text derives
the distribution function D(v) which defines the relative probability of finding a molecule in the gas with a
particular speed v. Important points about D(v):

• The actual value of D(v) at any point has no particular meaning. ”Its purpose in life is to be integrated”
in the sense that a the absolute probability of finding a molecule in the gas with speed between v1 and v2

is

P (v1...v2) =

∫ v2

v1

D(v)dv (75)
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Figure 7: Maxwell Distribution D(v)

• The derivation of D(v) in the text for a gas of particles with mass m in three dimensions results in

D(v) =
( m

2πkT

)3/2

4πv2e−mv
2/2kT . (76)

There are three important quantities that can be obtained from the Maxwell Distribution:

1. The most probable speed (obtained by maximizing D(v)): vmax =
√

2kT/m.

2. The average speed, obtained from v̄ =
∫
vD(v)dv =

√
8kT/πm.

3. The root-mean-square speed, obtained from
√
v̄2 =

√∫
v2D(v)dv =

√
3kT/m.

Notice that the absolute probability of finding a molecule in the gas with a specific speed is identically zero. It
only makes sense to talk about finding a molecule with a speed within a range of speeds bounded by v1 and
v2 6= v1.

Example: Atmospheric helium. We can easily calculate the rms-speeds of helium atoms in the troposphere.
The mass of a helium atom is 4 amu = 6.68 × 10−27kg. The temperature of the troposphere ranges between
17◦ and -50◦.

• What is the rms speed of helium at the top of the troposphere? Answer: vrms =
√

3kT/m = 1264 m/s.

• What fraction of helium atoms at the top of the troposphere have speeds greater than the escape speed
for the earth (11.2 km/s)? Answer: The probability of finding a helium atom with speeds greater than
1264 m/s is

P (v > 1.12× 104m/s) =
( m

2πkT

)3/2

4π

∫ ∞
1.12×104m/s

v2e−mv
2/2kT .

It’s convenient to use the variable transformation x = v
√
m/2kT = v/vmax (note vmax =

√
2/3vrms):

4π
( m

2πkT

)3/2
(

2kT

m

)3/2 ∫ ∞
xmin

x2e−x
2

dx =
4√
π

∫ ∞
xmin

x2e−x
2

dx,

where the lower limit is the value of x when v = 1.12× 104 m/s: xmin = 10.85. We find

P (v > 1.12× 104m/s) ≈ 0.00619

or about 0.62% of the helium molecules in lower atmosphere have speeds sufficient to escape.
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Of course, the mean free path in the lower atmosphere is quite small which further limits the probability of
escaping entirely from the earth. A better place to do these calculations is in the exosphere where atoms with
sufficient speeds are unlikely to collide with anything and so will escape if their speeds exceed escape speed.
You should redo this calculation for the exosphere where the average temperature is around 1800K.

17 Partition Functions and Free Energy

A quick review of the four thermodynamic potentials:

• Total Internal Energy U is the energy of the thermal motions and internal states of the system.

• Enthalpy H = U + PV is the energy recovered when you annihilate a system of volume V and total
internal energy U . The extra bit of energy PV comes from the work done by the collapsing atmosphere
at pressure P as it fills the space once occupied by the system.

• Helmholtz Free Energy F = U − TS is the total work you can extract when you annihilate a system with
total internal energy U in an environment at temperature T . The free energy is less than the internal
energy of the system because you need to dump some heat, equal to TS into the environment in order to
get rid of the system’s entropy. So F is the available or free energy.

• Gibbs Free Energy G = H − TS is the work you can extract when you annihilate a system with total
internal energy U in an environment at temperature T and constant pressure P .

See Ch. 5 for applications of these potentials. H and G are mostly useful when treating chemical reactions in
an atmosphere at constant temperature and pressure. The Helmholtz free energy F is mostly used for atomic
physics problems and other applications in which an atmosphere is not present or is not important to the
dynamics of the problem.

Here we’ll connect the Free Energy F to the partition function and derive some relations that will allow us
to use F to compute the thermodynamic properties of an arbitrary system.

In analogy with the derivation of the Boltzmann Factor and the partition function, the text argues (not
quite derives) the relationship between Z and F :

F = −kT lnZ

The thermodynamic properties are obtained from the following relations: S = −(∂F/∂T )|V,N , P = −(∂F/∂V )|T,N ,
µ = −(∂F/∂N)|T,V . You should be able to compute the entropy for the QHO from this approach (Prob. 6.42).
It’s also worth reviewing the Carnot Cycle. We derived the total work done in a Carnot cycle and it’s straight-
forward to show that the change in the free energy ∆F around the Carnot cycle is related to the work done
in the cycle according to WT ≤ ∆F . This result shows that F is indeed the maximum work obtainable in a
process in which the final temperatures and volumes are the same as the initial temperatures and volumes.

18 Partition Functions for Composite System

For N indistinguishable particles, the partition function for the system is

Z =
1

N !
ZN1

where Z1 is the partition function for a single particle in the system. If we specialize to consider the system
to be an ideal gas of indistinguishable molecules and allow these molecules to have energy in translational,
rotational, and internal modes, we can write the single particle partition function as

Z1 = e−βET .

Here, ET , the total energy might be written as ET = Etrans + Erot + Evib + Eelectronic + Enuclear where each
successive energy is much larger than the previous term:

Etrans < Erot < Evib << Eelectronic << Enuclear.

Let’s label the non-translational energy states as internal energies:

Eint = Erot + Evib + Eelectronic + Enuclear.
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We then have
Z1 = e−βEtranse−βEint = ZtransZint.

We could further break down Zint = ZrotZvibZelectronicZnuclear. In practice, because the electronic and nuclear
energies are so high, the exponential terms for these energies are all close to 1, so the partition functions
ZelectronicZnuclear ≈ 1.

Back to Ztrans: The book computes this partition function for a molecule in a volume V and finds Ztrans =
V/vQ where vQ is the “quantum volume” and is

vQ =

(
h√

2πm

)3

β3/2.

We then have

ZN =
1

N !

(
V Zint
vQ

)N
.

There is no need to specify Zint yet. We can go quite far without referencing a specific internal energy distri-
bution. To compute the thermodynamic properties of the system, we use our usual tricks:

U = −∂ lnZ

∂β
= Uint +

3

2
NkT.

CV =
∂U

∂T
=

3

2
Nk +

∂Uint
∂T

.

The Free energy is similarly straightforward:

F = −kT lnZ = −NkT [lnV − lnN − ln vQ + 1]−NkT lnZint.

The last term in the expression for F can be summarized as Fint = −NkT lnZint. The pressure P =
−(∂P/∂V )|T,N = NkT/V . Only the entropy and the chemical potential depend on the internal energies:

S = −
(
∂F

∂T

)
|V,N = Nk

[
ln

(
V

NvQ

)
+

5

2

]
− ∂Fint

∂T

and

µ =

(
∂F

∂N

)
|T,V = −kT ln

(
V Zint
NvQ

)
.


