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• D: Adiabatic Compression from volume V4 to volume V1. During this process, the temperature of
the gas increases from Tc back to Th. Analogously to step B, we find the work done on this leg to be:

WD = −∆U = −f

2
Nk(Th − Tc) < 0.

The gas does work on the piston.

The total work done in one cycle of the Carnot Engine’s operation is the sum WA + WB + WC + WD. After
a bit of algebra, you can find

WT = −Nk

[
Th log

(
V2

V1

)
+ Tc log

(
V4

V3

)]

. Now the adiabatic relations appropriate for steps B and D are:

ThV γ−1
2 = TcV

γ−1
3

TcV
γ−1
4 = ThV γ−1

1

These imply the relation (V1/V2) = (V4/V3) which allows us to simplify the total work expression:

WT = −Nk log
(

V2

V1

)
(Th − Tc) < 0.

The gas does work on the piston!

14 Free Energy and Thermodynamic Potentials

Notes not available.

15 Boltzmann Factor and the Partition Function

Ω is too hard to calculate for all but a handful of systems. I’m sure there are others for which one can
straightforwardly find Ω, but I only know of the ones we’ve worked with: the ideal gas, the two-state paramagnet,
the isolated H-atom, and the quantum harmonic oscillator. So, if we didn’t have another approach to statistical
mechanics, we would have no fundamental insights into most systems. We would only be able to operate at the
“chemistry level” of measuring enthalpies and extrapolating entropies and specific heats. etc. As physicists,
we’d like to be able to calculate S from first principles for all systems. Fortunately there is an alternative to
starting with the multiplicity function. It is the partition function.

Question: What is the probability of finding a system in a given macrostate when the system is in thermal
equilibrium with a reservoir at temperature T and total energy U0?

Answer: One of the most difficult derivations in physics. However, we can heuristically arrive at the correct
answer: For concreteness, take the system to be an atom with discrete energy states En. Let P (E1) be the
probability that the atom is in state E1, and P (E2) be the probability that the atom is in state E2. Now,
P (E1)/P (E2) = Ω1/Ω2. Since, S = k log Ω, we have Ωn = exp(Sn/k). The entropy of the atom is the entropy
of the reservoir SR at energy U0 − En. The ratio of probabilities is then

P (E1)
P (E2)

=
eSR(U0−E1)/k

eSR(U0−E2)/k
=

eS(1)
R /k

eS(2)
R /k

If the reservoir’s temperature is constant, as the atom exchanges small amounts of heat with it, then
dSR = −dU/T , so we have the important result that the ratio of probabilities of the atom being in the states
E1 and E2 is

P (E1)
P (E2)

= e−(E1−E2)/kT

What about the absolute probability of the atom being in state E1. Clearly the relative probability is
e−E1/kT , so to find the absolute probability of being in that state, I’d want to normalize by the sum of all the
relative probabilities:

P (E1) =
e−E1/kT

∑
n e−En/kT
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Definitions: The relative probability e−En/kT is called the Boltzmann Factor. The sum over all relative
probabilities is called the Partition Function, Z. The probability of a system being in state En is then

P (En) =
1
Z

e−En/kT

Average Values: For a function f(x) with probability distribution P (x), the average value of the function,
< f > will be given by

< f >=
∑

n

f(xn)P (xn) =
1
Z

∑

n

f(xn)e−βEn

where β ≡ 1/kT .
Example: Quantum Harmonic Oscillator: Recall that the microscopic energy of an individual QHO is

given by En = 1
2 h̄ω + nh̄ω. The partition function for this system is then

ZQHO =
∞∑

n=0

= e−β(n+ 1
2 )h̄ω = e−

1
2 βh̄ω

∞∑

n=0

e−βnh̄ω.

Let’s define x ≡ βh̄ω, so that

Z = e−x/2
∞∑

n=0

e−nx

. That sum should look familiar. It can be shown that it has the closed form expression

∞∑

n=0

e−nx =
1

1− e−x
.

. Making use of the observation that sinhx ≡ (ex − e−x)/2, we find

Z =
1

2 sinh
(

βh̄ω
2

)

The temperature dependence of the total energy can be found using the relation for the average or expectation
value of a function:

Z < U > =
∞∑

n=0

(
n +

1
2

)
h̄ωe−β(n+ 1

2 )h̄ω

=

[ ∞∑

n=0

nh̄ωe−βnh̄ω +
∞∑

n=0

1
2
h̄ωe−βnh̄ω

]
e−βh̄ω/2

=
x

2β
e−x/2

[
2
∞∑

n=0

ne−nx +
∞∑

n=0

e−nx

]

=
x

2β
e−x/2

[
1 + e−x

(1− e−x)2

]
.

In the last step, I used the following useful trick:

d

dx

∞∑

n=0

e−nx = −
∞∑

n=0

ne−nx

⇒
∞∑

n=0

ne−nx = − d

dx

1
1− e−x

=
1

(1− e−x)2

Dividing by Z, we find the total internal energy < U >= U to be

UQHO =
h̄ω

2
eβh̄ω + 1
eβh̄ω − 1

High Temperature Approximation At high temperature eβh̄ω ≈ 1 + βh̄ω + O(βh̄ω)2. Applying this
expansion to the numerator and denominator, we find that the high temperature behavior of the total internal
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energy U is linear in T : U(kT >> h̄ω) ≈ kT . Heat Capacity of the QHO To calculate the heat capacity of
an Einstein Solid consisting of N QHO’s, we follow the prescription CV = (∂U/∂T )V :

CV =
(

∂U

∂T

)

V

=
∂β

∂T

(
∂U

∂β

)

V

= −Nkβ2

(
∂U

∂β

)

V

= −Nkβ2(h̄ω)2
[

−eβh̄ω

(eβh̄ω − 1)2

]

= Nk(βh̄ω)2
eβh̄ω

(eβh̄ω − 1)2

You should verify that the low temperature behavior of the heat capacity is

CV ∝
1

T 2
e−h̄ω/kT .

A Useful Relation For any system with microscopic energy spectrum E(s) there is a useful relation for
calculating the total energy U Notice that ∂Z/∂β = −

∑
s E(s)e−βE(s) = −Z < U >. The handy result is then:

< U >= − 1
Z

∂Z

∂β

Another Example: Two-state paramagnet For a two-state paramagnet with microscopic energy spectrum
given by E(s) = (−µB, +µB), the partition function is:

Z =
∑

s

eβE(s) = eβµB + e−βµB = 2 cosh(βµB).

Using the relation for U above, we find the temperature dependence of the total energy to be:

U = − 1
Z

∂Z

∂β
= −µB tanh(βµB)

The magnetization is M = −U/B = µ tanh(βµB). What is the probability of the paramagnet being in the
energy state −µB? P (−µB) = (1/Z)eβµB =

These results are the same as we found earlier using the much more calculation-intensive process based on
the multiplicity function Ω.


