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• The restoring force is linear in L. The longer the chain, the larger is the tendency to crumple

• The tension in the chain is greater at higher temperatures. Therefore, increasing the temperature should
cause the chain to fold up. This is the opposite behavior that we find in an ideal gas which wants to
expand as the temperature is increased.

• We have assumed adiabatic stretching - the total entropy should be constant. But, as the chain contracts,
the configurational entropy increases. Therefore, the vibrational entropy must decrease to compensate for
the increase in configurational entropy. The reduction in the total number of vibrational states available
to the chain corresponds to a decrease in the effective temperature of the chain.

The last point has some interesting physical consequences. Consider a rubber band which is pretty much a
network of simple polymer chains like the one we’ve been modeling. As you stretch the rubber band, you
are decreasing the configurational entropy (chain is straightening out). This must be compensated for (in the
adiabatic approximation) by an increase in the vibrational entropy - an increase in the temperature of the rubber
band! Conversely, as you allow the rubber band to shrink, the configurational entropy goes up, the vibrational
entropy goes down, and the temperature of the rubber band goes down! You can check this by stretching and
relaxing a rubber band that is just barely touching your lips. You can usually feel the temperature changes on
those fat rubber bands. Not so much on the thin ones.

12.5 Diffusive Equilibrium

We’ve learned that there is an equilibrium as well as a state variable associated with maximizing the entropy
with respect to energy U (defines temperature) and volume V (defines pressure). Analogously, we can imagine
letting the number of particles vary and expect that a maximal entropy with respect to N will define a new
equilibrium and associated thermodynamic potential.

Consider a box divided into two sub-volumes VA and VB . The divider is a permeable membrane that allows
particles to move from one side of the box to the other without changing the sub-volumes.

Figure 5: A system in which particles are allowed to cross a permeable membrane in order to maximize entropy

In equilibrium the total entropy Stotal will be maximal:
(

∂Stotal
NA

)

UA,VA

= 0

Since dNA = −dNB , we can write
∂SA

NA
=

∂SB

NB
.

Multiplying both sides by −T , we arrive at the definition of the chemical potential µ:

µ ≡ −T

(
∂S

∂N

)

U,V

.

The equilibrium associated with µ is diffusive equilibrium. Think of µ as a potential or a force that tells us
which way particle flow will occur. If µA < µB then particles will flow from B to A. In general, particle flow
occurs from the system with the higher chemical potential to the system with the lower chemical potential. The
text works out some simple sample calculations for µ. For a small Einstein solid, we find µ = −ε where ε is the
level spacing of the harmonic oscillator.
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So, collecting the thermodynamic potentials we’ve developed so far, we have:
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13 Engines and Refrigerators

In class, we drew our basic engine energy diagrams: Heat Qh enters our engine from a heat reservoir at
temperature Th. The engine does work W with the heat Qh and expels waste heat QC to a cold reservoir at
temperature Tc. A refrigerator operates the same way with all of the “arrows reversed. The efficiency of such

Figure 6: An engine operates by taking heat Qh from a reservoir at temperature Th, converting some of Qh to
work W , and expelling the rest of the heat Qc = Qh −W to the waste reservoir at temperature Tc

an engine is the ratio of output work W to input energy Qh.

ε =
W

Qh
.

The first law of thermodynamics, tells us that Qh = W + Qc, so that

ε =
Qh −Qc

Qh
= 1− QC

Qh
.

The second law of thermodynamics relates the entropy generated at each step of the engine cycle. When heat
Qh is extracted from the hot reservoir, an amount of entropy Qh/Th is removed from the reservoir. When
heat Qc is expelled to the cold reservoir, an amount of entropy Qc/Tc is generated and dumped into the cold
reservoir. Since the net entropy production must be positive, we must have

Qc

Tc
≥ Qh

Th
.

This can be read as
Qc

Qh
≥ Tc

Th

which allows us to express the efficiency of the engine as a bounded value:

ε ≤ 1− Tc

Th
.

The upper limit of efficiency when ε = 1− Tc/Th is called the Carnot efficiency and represents the theoretical
limit of any heat engine operating between reservoirs at temperatures Th and Tc. All real engines have efficiencies
considerably less than this upper limit.
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Example: Power Plant The Pleasant Prairie Power Plant consists of two 612 MW units that operate
with a hot reservoir (superheated steam) at 2000 F (1366 K) and a cold reservoir (evaporation towers) with
temperature 955 F = 786 K. The Carnot efficiency of such an “engine” is 1− Tc/Th = 0.42. Some 13,000 tons
of coal arrive daily to feed the burners. If the power plant operated at its Carnot limit (impossible!), then it
would still use only 0.42 × 13, 000 = 5460 tons/day to generate useful work (electricity). The rest - 7540 tons
of coal is waste energy.

Example: A Power Plant Uses a River for its Cold Reservoir Consider a power plant that produces
1 GW of electricity at an efficiency of 0.4. (a) What is the rate of waste heat expulsion to the environment?

The power delivered is P = W/∆t = 1GW . The work done is W = εQh = ε(W + Qc). Therefore,
Qc = (1− ε)W/ε. So,

dQc

dt
=

1− 0.4
0.4

(1GW ) = 1.5GW

(b) Assume that the cold reservoir is a river with a flow rate of 100m3/s. What is the downstream temper-
ature of the river? 1.5 GJ goes into 100 m3 of water each second. The heat delivered is Q = mc∆T . Therefore,
the temperature rise of the river water is ∆T = Q/mc = Q/(ρV c) = (1.5GJ)/[(1000kg/m3)(100m3)(4200J/kg−
C)] = 3.6◦C. This is thermal pollution. One possible solution is to use river water to cool the plant as before,
but allow the water to evaporate. This approach is pursued in the homework problems for this chapter.

Example: Thermal Gradient Power Generation One proposal for a green energy source is using the
difference in temperature between the warmer surface layers of water and the deeper, colder layers of water
in the ocean. What is the maximum possible efficiency of such an engine? The colder layers have an average
temperature of 277 K, while the surface layers might be at 295 K. The Carnot efficiency of a thermal gradient
engine is thus ε = 1 − 277/295 = 0.061 ≈ 6%. In practice, the waste heat would increase the temperature of
the cold bath, while reducing the temperature of the hot bath. Suppose we extract heat from the warmer water
until its temperature drops by 0.5∆T = 9K. We then expel the heat into the cold layers until its temperature
increases by 9 K. The Carnot efficiency is then ε = 1− (281.5/290.5) = 0.031 ≈ 3%.

Suppose we wish to generate useful work at the rate of 1 GW. How many cubic meters of water would be
required each second to accomplish this? The heat extracted from each kilogram of water is C∆T = 9×4186 =
38kJ . At 3.1% efficiency, we can only get 1.2 kJ of work from this cycle. Therefore, we’d require about
109J/1200J/kg = 8.6× 105kg of water. This is about 900 m3 of water each second.

13.1 Carnot Engine

In this section, we work out the total wok that can be done by an engine operating between two reservoirs
at temperature Th and Tc. The cycle that Carnot designed to produce the highest possible efficiency (Carnot
efficiency) is a 4-step cycle that alternates isothermal and adiabatic expansions and compressions. For concrete-
ness, we take a gas of N particles to be confined to a cylinder whose volume can be varied by the movement of
a piston.

• A: Isothermal Expansion from volume V1 to volume V2 at temperature Th. Here, the work done
is

WA = −
∫ V2

V1

PdV = −NkTh

∫ V2

V1

dV

V
= −NkTh log

(
V2

V1

)
< 0.

Since WA < 0, the gas does work on the piston.

• B: Adiabatic Expansion from volume V2 to volume V3. During this process, the temperature of
the gas drops from Th to Tc. Since the expansion is adiabatic, the heat exchange with the environment is
zero (Q = 0). By the first law, the work done is:

WB = −∆U = −f

2
Nk∆T = +

f

2
Nk(Th − Tc) > 0.

Again, WB > 0 so work is done by the gas on the piston.

• C: Isothermal Compression from volume V3 to volume V4 at temperature Tc: As in step A
above, we have

WC = −
∫ V4

V3

PdV = −NkTc

∫ V4

V3

dV

V
= −NkTc log

(
V4

V3

)
> 0.

Note that V4 < V3, so the work done in this step is greater than zero: piston does work on the gas.
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• D: Adiabatic Compression from volume V4 to volume V1. During this process, the temperature of
the gas increases from Tc back to Th. Analogously to step B, we find the work done on this leg to be:

WD = −∆U = −f

2
Nk(Th − Tc) < 0.

The gas does work on the piston.

The total work done in one cycle of the Carnot Engine’s operation is the sum WA + WB + WC + WD. After
a bit of algebra, you can find

WT = −Nk

[
Th log

(
V2

V1

)
+ Tc log

(
V4

V3

)]

. Now the adiabatic relations appropriate for steps B and D are:

ThV γ−1
2 = TcV

γ−1
3

TcV
γ−1
4 = ThV γ−1

1

These imply the relation (V1/V2) = (V4/V3) which allows us to simplify the total work expression:

WT = −Nk log
(

V2

V1

)
(Th − Tc) < 0.

The gas does work on the piston!


