
12 CHAPTER 3: TEMPERATURE AND ENTROPY 30

The magnetization of the material is then

M(N,T,B) = Nµ tanh
(

µB

kT

)

5. The heat capacity CV should be straightforward. What do you get?

The magnetization function in step (4) above is an interesting result. Experimentally, paramagnetic systems are
known to obey Curie’s Law at low values of magnetization. The temperature dependence of the magnetization
when the external field B is small is given by:

M = C
B

T
(Curie’s Law)

where C is a material constant called the Curie Constant. Does our magnetization obey Curie’s law? For small
B at non-zero temperatures, we have kT >> µB and we can Taylor expand the tanh function:

tanh x = x− x3

3
+

2
15

x5 − · · ·

. Therefore, when kT >> µB, we have

M(N,T,B) ≈ Nµ

(
µB

kT

)

Apparently, the Curie Constant is C = Nµ2/k. Our paramagnetic model reproduces Curie behavior at low B.

12.4 Pressure and Mechanical Equilibrium

Two systems, A and B brought to contact and allowed to equalize volumes (imagine that each box is a flexible
membrane so that the two volumes can reach equilibrium) will come to mechanical equilibrium. This condition
is synonymous with

∂SA

∂VA
=

∂SB

∂VB

. We let mechanical equilibrium define the pressure, and find

P (T, V,N) = T

(
∂S

∂V

)

U,N

We can derive equations of state from this relation. For example, the ideal gas has a multiplicity function given
by

Ω(U, V,N) = f(N)V NU3N/2

The Sakur-Tetrode entropy is then

S(U, V,N) = k log Ω = k

[
log f(N) + N log V +

3N

2
log U

]

The pressure is then

P (T, V,N) = T

(
∂S

∂V

)

U,N

=
NkT

V

⇒ PV = NkT

We’ve derived the Ideal Gas Law from the multiplicity function of the ideal gas. You can follow the same
procedure to derive the equation of state for any system for which the pressure has a well defined meaning. As
a final example, we can consider the protein folding problem alluded to in the text. First, we’ll need a very
important relation which I’ll call the “Entropy Identity.” If we let S be a function of U and V , then we can
write the differential of S as

dS =
(

∂S

∂U

)

V

dU +
(

∂S

∂V

)

U

dV

Using the definitions of temperature and pressure in terms of the entropy, we can write the entropy identity as

dS =
dU

T
+

P

T
dV Entropy Identity
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We’ll consider several applications of this identity in the next few classes. This entropy identity turns out to be
really useful in the homework!
Protein Folding Example: In class, we discussed the structure-function paradigm of molecular biology. The
determination of the final shape of a folded protein is a very difficult and important problem in this field. In
essence, the protein folding process is driven by electrostatic interactions and entropy. Let us consider the
reason that proteins fold into complex shapes at all. While the details of the folding process are driven by the
electrostatics (chemical bonding), the fact that proteins fold at all is purely the result of the higher entropy of
the more disordered (folded) state as compared to the linear chain state of the unfolded protein.

As a toy model of a simple protein, consider a chain consisting of N monomers, each of length l0. The
monomers are simple links that can either “point” right or left. Let the number of such monomers that point
to the right be NR, and the number of monomers that point to the left be NL such that N = NR + NL. The
equilibrium length of the folded structure will be L = l0(NR −NL) as shown in the figure. Each link has two

Figure 4: toy model of a one-dimensional protein. The end-to-end length is L, while the link-length is l0.

possible states (left and right), so we can immediately write down the multiplicity function:

Ω =
(

N

NR

)

. The entropy is found by analogy to the coins or paramagnet example:

S(N,NR) = k [N log N −NR log NR − (N −NR) log(N −NR)]

. The goal of this calculation is to determine the entropy-driven restoring force F that tends to crumple
the chain. This force will be a function of temperature. If we consider that we want F > 0 to represent a
restoring force that shrinks the chain, then the force F is analogous to −P . We can rewrite the entropy identity
accordingly:

dU = TdS + FdL

. The last term is the work done on the chain by quasistatically stretching it by an amount dL. Now, consider
that we wish to consider the thermodynamics of our chain under constant temperature conditions - the protein
chain is in a cell at constant T . For an isothermal process, we have dU = 0, and TdS = −FdL. Therefore, the
analogy to the pressure definition above is

F = −T

(
∂S

∂L

)

U

. For these notes, I’ll spare you the algebra we worked in class to compute this force. The ingredients were

• NR = 1
2

(
N + L

l0

)

•

∂S

∂L
=

∂S

∂NR

∂NR

∂L
=

1
2l0

∂S

∂NR

• Assume Nl0 >> L

After some algebra and the three ingredients above, we find

F ≈ kTL

Nl20

Some interesting behaviors are now apparent:
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• The restoring force is linear in L. The longer the chain, the larger is the tendency to crumple

• The tension in the chain is greater at higher temperatures. Therefore, increasing the temperature should
cause the chain to fold up. This is the opposite behavior that we find in an ideal gas which wants to
expand as the temperature is increased.

• We have assumed adiabatic stretching - the total entropy should be constant. But, as the chain contracts,
the configurational entropy increases. Therefore, the vibrational entropy must decrease to compensate for
the increase in configurational entropy. The reduction in the total number of vibrational states available
to the chain corresponds to a decrease in the effective temperature of the chain.

The last point has some interesting physical consequences. Consider a rubber band which is pretty much a
network of simple polymer chains like the one we’ve been modeling. As you stretch the rubber band, you
are decreasing the configurational entropy (chain is straightening out). This must be compensated for (in the
adiabatic approximation) by an increase in the vibrational entropy - an increase in the temperature of the rubber
band! Conversely, as you allow the rubber band to shrink, the configurational entropy goes up, the vibrational
entropy goes down, and the temperature of the rubber band goes down! You can check this by stretching and
relaxing a rubber band that is just barely touching your lips. You can usually feel the temperature changes on
those fat rubber bands. Not so much on the thin ones.


