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11.2 Entropy of a black hole

This is problem 2.42 on page 84 of the text. We went over in general in class. Here are the specifics of the
problem.

(a) By dimensional analysis, the radius must be proportional to GM/c2.

(b) Ordinarily, the entropy of a system is of the same order as the number of particles in the system. If
we take a system of N particles and compress it to form a black hole, the second law requires that when we’re
done, the entropy of the black hole is still at least of order N . But since the end result is the same whether we
start with a lot of particles or a few (with the same total mass), the final entropy must in fact be of the order
of the maximum N , the largest possible number of particles that it could have been formed from.

(c) Suppose we start with N photons, each of which has a wavelength equal to the size of the black hole:
λ = GM/c2. Each photon has an energy E = hc/λ, and the total energy of all of them must equal Mc2:

Mc2 = NE =
Nhc

λ
=

Nhc3

GM
.

Solving for N gives

N =
GM2

hc
,

and so the entropy in conventional units must be of order

S ∼ GM2k

hc
.

(d) For a one-solar mass black hole,

S

k
= 1.06x1077; S = 1.5x1054J/K.

This is an enormous entropy. For comparison, an ordinary star like the sun contains something like 1057

particles, so its entropy is something like 1057k. To equal the entropy of a single one-solar- mass black hole, you
would need 1020 ordinary stars or enough to populate a billion (109) Milky Way galaxies. Furthermore, since
the entropy of a black hole is proportional to the square of its mass, a million-solar mass black hole (as may
exist at the center of our galaxy) would have a trillion times the entropy of a one-solar-mass black hole.

12 Chapter 3: Temperature and Entropy

We’ve determined (defined) thermal equilibrium to be the condition that arises when two systems are brought
into thermal contact and allowed to achieve maximal entropy. Consider two systems A and B with internal
energies UA and UB , and entropies SA and SB . The total entropy of the combined system is ST = SA + SB .
The maximal entropy condition (2nd law of thermo) holds that the total entropy is maximal with respect to
either UA or UB :

∂ST

∂UA
= 0

∂SA

∂UA
+

∂SB

∂UA
= 0

Now, the total energy U = UA + UB is a constant. This implies that ∂UA = −∂UB . So, we have the thermal
equilibrium condition:

∂SA

∂UA
=

∂SB

∂UB

. We will use this condition to define temperature:

T−1 ≡ ∂S

∂U
‖N,V (73)

Usually S is a convex function of U . There are cases where S is no convex in U . We discussed these in class:

• “normal” systems: S is convex in U - ∂S/∂U decreases as U increases. In this case the temperature
increases as U increases.
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• “miserly” systems: ∂S/∂U increases as U increases. In this case, the temperature decreases as U is
increased. Examples of such systems include gravitationally bound clusters - stars, galaxies, planetary
systems, etc. Adding energy to a particle in orbit around a star will cause the particle to climb up the
gravitational well, finding a higher orbit and necessarily slowing down. This reduction in orbital velocity
corresponds to a decrease in the effective temperature of the particle. The added U went into gravitational
potential energy.

• “enlightened” systems. These are systems for which ∂S/∂U is negative and grows in magnitude as U
increases. The negative ∂S/∂U means that the effective temperature of the system is negative. This is
perfectly acceptable in the context of the current definition of temperature as the inverse of the slope of
entropy vs. energy, but makes no sense in the context of the heuristic definition of temperature as the
rms kinetic energy per particle. The latter quantity can never be negative. So, there is not a one-to-one
correspondence between the two definitions. The only time, we have a disparity is in these “enlightened”
systems. Examples of such systems include all models of magnetism in which the individual dipole energies
are constrained to a finite set of values. Consider the coin model: Each coin can be heads or tails and
nothing else. As the “temperature” is increased, more and more coins flip to their high energy state
(heads) until there can be no further flipping. The coins are now in a minimal entropy state even though
we’ve been continually adding energy.

12.1 Measuring Entropies

How much entropy does your thoughtful brain generate in an hour of thinking about entropy? First consider
an isothermal thought process: your body temperature is a constant 98.6 ◦F=310.15 K. Any heat you generate
is dissipated into the environment without substantial temperature increase. The heat Q you generate in one
hour is your metabolism × 3600 seconds. A thoughtful brain thinking about entropy operates at a metabolic
rate of about 70 W. So the total Q in one hour is Q = 70W × 3600 sec. = 2.52 × 105J . For an isothermal
process, the entropy generated is

∆S =
Q

T
=

2.52× 105J

310.15K
= 812.5J/K

What is the increase in the universe’s multiplicity as a result of you thinking about entropy for an hour?

∆ log Ω =
∆S

k
= 5.89× 1025 ⇒ Ωf = Ωie

5.89×1025
= Ωi × 102.56×1025

12.2 Heat Capacities

The process for calculating heat capacities is:

1. Quantum Mechanics + Combinatorics is used to generate the multiplicity function Ω.

2. Find entropy: S = k log Ω

3. Find temperature: T−1 = ∂S
∂U

4. Solve for U(T ).

5. The heat capacity for the system is CV = ∂U
∂T .

Examples:

• High temperature limit of Einstein Solid:

1. Recall that the ES has following multiplicity approximation for n >> N : Ω(N,n) ≈ ( en
N )N .

2. S = k log Ω = Nk[1 + log( n
N )]. Write U = εn where ε is the energy level spacing.

S(U, V,N) = Nk

[
1 + log

(
U

εn

)]
for U >> Nε

3. T−1 = ∂S
∂U = Nk

U

4. Solve for U :
U = NkT

This is the result we would have obtained by the equipartition theorem, yet we did not “enforce” the
equipartition theorem; it arises naturally from the Second Law.
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5. Calculate the heat capacity:

CV =
∂U

∂T
= Nk

The heat capacity is a constant for this high temperature solid.

• Monatomic ideal gas: We worked this one in class starting from the Sakur Tetrode equation for the
entropy. We found

– U = 3
2NkT

– CV = 3
2Nk.

In general, the heat capacity of an ideal gas is CV = (f/2)Nk.

12.3 Paramagnetism

Recall that paramagnetism is a form of magnetism that occurs only in the presence of an externally applied
magnetic field. Elements can be paramagnetic if they have unpaired electrons. Examples of paramagnetic
elements include Al, Ba, O, U, Mg.

A paramagnetic material has an unpaired electron in its outer valence. This electron has a dipole moment
µ. In the presence of an external magnetic field, B, the dipole can either align or anti-align with the field. The
energy is increased by an amount µB for electrons counter-aligned with the external field, and decreased by
−µB for electrons aligned with field. To flip a single electron’s dipole from up to down requires a total energy
of 2µB.

The total energy of a set of N dipoles in a field B is

U = µB(N↓ −N↑)

Note that U < 0 if N↑ > N↓ - if there are more ups than downs in the set of N dipoles. Further, define the net
magnetization of the paramagnet as the quantity

M ≡ µ(N↑ −N↓) = −U

B

.
Now, let’s carry out our prescription for calculating U(T ) and C(T ).

1. To find the multiplicity, note that this system is identical to the coin system that we’ve studied. So, we
can straightforwardly write down the multiplicity:

Ω(N,N↑) =
N !

N↑!N↓!
=

N !
N↑!(N −N↑)!

2. S = k log Ω. Apply Stirling Approximation for the case N >> 1:

S

k
= log N !− log N↑!− log(N −N↑)!

≈ N log N −N −N↑ log N↑ + N↑ − (N −N↑) log(N −N↑) + (N −N↑)
≈ N log N −N −N↑ log N↑ − (N −N↑) log(N −N↑)

3. Now we find the temperature-energy equation of state:

1
T

=
(

∂S

∂U

)

N,B

=
∂N↑
∂U

∂S

∂N↑

= − 1
2µB

∂S

∂N↑

=
k

2µB
log

(
N − U/µB

N + U/µB

)

4. The equation of state is more conventionally written as U(T ):

⇒ U(N,T,B) = NµB

(
1− e2µB/kT

1 + e2µB/kT

)
= −NµB tanh

(
µB

kT

)
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The magnetization of the material is then

M(N,T,B) = Nµ tanh
(

µB

kT

)

5. The heat capacity CV should be straightforward. What do you get?

The magnetization function in step (4) above is an interesting result. Experimentally, paramagnetic systems are
known to obey Curie’s Law at low values of magnetization. The temperature dependence of the magnetization
when the external field B is small is given by:

M = C
B

T
(Curie’s Law)

where C is a material constant called the Curie Constant. Does our magnetization obey Curie’s law? For small
B at non-zero temperatures, we have kT >> µB and we can Taylor expand the tanh function:

tanh x = x− x3

3
+

2
15

x5 − · · ·

. Therefore, when kT >> µB, we have

M(N,T,B) ≈ Nµ

(
µB

kT

)

Apparently, the Curie Constant is C = Nµ2/k. Our paramagnetic model reproduces Curie behavior at low B.


