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Therefore,

log Ω(N,n) ≈ (n + N)
[
log n +

N

n

]
− n log n−N log N

≈ N log n + (n + N)
N

n
−N log N

≈ N log
( n

N

)
+ N +

N2

n

≈ N log
( n

N

)
+ N

where in each step, we’ve made use of the fact that n >> N to eliminate small terms. Finally, we have the
desired result:

Ω(N,n) = eN
( n

N

)N
for n >> N (65)

You should be able to work out the corresponding low temperature limit (n << N). Hint: Even though we
require n << N , we still have n >> 1.

9.9 The Thermodynamic Limit

In this section we bring two Einstein solids into contact as before and explore the form of the multiplicity
function in the high temperature limit define in the previous section. The point of this section is to quantify the
statement that the most probable macrostate is the one in which the two systems are in thermal equilibrium.

Using the high-temperature expression for the multiplicity function of a single ES, we can model the com-
posite consisting of two ES’s each with N oscillators:

Ω = Ω1Ω2 ≈ e2N
(n1

N

)N (n2

N

)N

Now, to explore what this function looks like near its peak, let’s define the following parameters

n ≡ n1 + n2

n1 ≡ n

2
+ x

n2 ≡ n

2
− x

The latter two relations define x - the distance that each of the solids’ energy macrostate is from the “thermal
equilibrium point” n/2 (the peak of the function Ω(N,n) at a given N . In terms of tx, Ω takes the form

Ω(N,x) =
1

N2N

[(n

2
+ x

)N (n

2
− x

)N
]

e2N

=
( e

N

)2N
[(n

2

)2
− x2

]N

(using (a + x)(a− x) = a2 − x2)

Now we can evaluate the logarithm of Ω, apply our approximation tricks, and then exponentiate to get Ω back:

log Ω = 2N log
( e

N

)
+ N log

[(n

2

)2
− x2

]

Now, let’s work on the second term above:

log
[(n

2

)2
− x2

]
=

[(n

2

)2
(

1−
(

2x

n

)2
)]

= log
(n

2

)2
+ log

[
1−

(
2x

n

)2
]

≈ log
(n

2

)2
−

(
2x

n

)2

(using the first term of the Taylor expansion of the log function: log(1− ε) ≈ −ε)
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Exponentiating both sides, we have

Ω(N,x) ≈ e2N

N2N
expN

[
log

(n

2

)2
−

(
2x

n

)2
]

≈ e2N

N2N

(n

2

)2N
e−N(2x/n)2

Since, we should regard N as a fixed constant, we can recast Ω as a function of n and x:

Ω(x, n) ≈ Ωmaxe−N(2x/n)2 (66)

The text illustrates how sharply peaked this Gaussian function is. There is just (almost) no chance that the
system will be found in any other state but the state at the peak of the Ω distribution.

10 Multiplicity of an Ideal Gas

Calculating the multiplicity of an Einstein Solid was relatively straight forward. In an upcoming chapter, we will
learn about the partition function which will allow us to circumvent the actual calculation of the multiplicity
function. This is a good thing, because it is almost always impossible o directly calculate it. One of the few
other systems for which the multiplicity is easily calculated is the ideal gas.

Imagine a single molecule in a 3-D volume V . What does Ω1 depend on?

• the more physical positions for the molecule to be in, the larger the multiplicity:

⇒ Ω1 ∝ V

• the more momentum states the molecule is allowed to have, the larger the multiplicity:

⇒ Ω1 ∝ Vp

where Vp is the “volume” of available momentum space.

What does this last volume represent? The kinetic energy of a single particle is

U1 =
1
2
m(v2

x + v2
y + v2

z) =
1

2m
(p2

x + p2
y + p2

z).

This define the surface of a sphere with coordinate px, py, and pz. The radius of the sphere is
√

2mU . Since all
momentum triplets must satisfy this constraint, we can imagine that the allowed values of momentum exist on
the surface of a sphere of radius

√
2mU .

But, how many values of the momentum can exist on the momentum sphere? Here, I refer you to the text,
because I have nothing to add or subtract from the arguments on page 69-70 for the calculation of the number
of allowed momenta living on our p-sphere. The result of Schroeder’s analysis is that the multiplicity function
of a single particle gas in a volume V is:

Ω1 =
V Vp

h3

where h = 6.63 × 10−34J sec. is Planck’s Constant. You really need to read the appendix on basic quantum
mechanics if you don’t understand where the h comes from.

Now, Vp is actually the area of the momentum sphere of radius
√

2mU . The surface area of a sphere is
4πR2, so

Vp = 4π(
√

2mU)2 = 8πmU

If there were two particles in the gas (each of mass m), we should find

Ω2 =
1
2
(
V

h3
)2 × (area of 2-particle momentum “hypersphere”).

A two particle gas has a total energy of

U2 =
1

2m
(p2

1x + p2
1y + p2

1z + p2
2x + p2

2y + p2
2z).
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U2 defines the surface of a six-dimensional hypersphere. Clearly, we can generalize to an N−particle gas:

ΩN =
1

N !
V NV N

p

h3N

The area of the relevant N -particle momentum hypersphere has 3N dimensions. How do you compute the
surface area of a 6N -dimensional sphere?? Appendix B has the answer. And the answer is that the area of a
d-dimensional hypersphere of radius R is

Ad = CdR
d−1

where Cd is a constant given by

Cd =
2πd/2

Γ
(

d
2

) .

The Γ function is defined by

Γ(n + 1) =
∫ ∞

0
xne−xdx = n!.

The Γ function is a generalization of the factorial function that works even when the argument is not an integer.
Using this definition you can see that the constants for the first few “spheres” are C1 = 1, C2 = 2π, and
C3 = 4π. So, what’s the area of a four-dimensional sphere? Work it out to get the somewhat interesting result
A4 = 2π2R3.

Applying the formula for the area of a hypersphere to the multiplicity of an ideal gas, we first need to find
the area of the d = 3N -dimensional momentum hypersphere:

A3N =
2π3N/2

Γ
(

3N
2

) × (2mU)
3N
2 −1

Now, Γ(3N/2) = (3N/2 − 1)! ≈ (3N/2)!, and we can replace the exponent of (2mU): 3N/2 − 1 ≈ 3N . So, we
have:

ΩN =
1

N !
V N

h3N

π3N/2

(
3N
2

)
!
(2mU)3N/2 (67)

You should work out the equivalent multiplicity function for a gas confined to a two-dimensional “volume”
(prob. 2.26) and find

Ω2d
N =

(
1

N !

)2 (
2mAπU

h2

)N

10.1 Interacting Systems

In analogy to the derivation of the total multiplicity function for two Einstein Solids in contact, we can write
the multiplicity function for two containers of N gas particles in thermal contact as

Ωtotal = ΩAΩB = [f(N)]2(VAVB)N (UAUB)3N/2

with f(N) shorthand for the complicated function of N that appears in the multiplicity function for the ideal
gas. Working in analogy with the Einstein Solid problem, you can determine that the peak of Ωtotal has width
(VA + VB)/

√
N . Again, we find a sharp peak that represents all the microstates corresponding to thermal

equilibrium. There is just no chance (almost literally) that the composite gas will be found in any state other
than thermal equilibrium.

This is the fundamental result of statistical mechanics:

Any large system in equilibrium will be found in the macrostate with the greatest multiplicity

11 Entropy

The statement above is essentially a statement of the Second Law of Thermodynamics. All this talk about
multiplicity has really been about entropy. It turns out to be more convenient to work with the logarithm of
large numbers (the logarithm of huge numbers are not huge at all: log e100 = 100. So, entropy is defined as the
log of the multiplicity:

S = k lnΩ (68)
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Check out Boltzmann’s headstone - he had this engraved on it. The factor of k is a historical artifact that
allows us to define the temperature according to:

T−1 ≡ ∂S

∂U

Example: The entropy of an Einstein Solid: Recall that the multiplicity is Ω(N,n) = (en/N)N when
n >> N . The entropy is therefore S = kN [1 + log(n/N)]. e.g., if N = 1022 and n = 1024, we have
S ≈ 0.77J/K.

Example: Ideal Gas: The book works out the famous Sakur-Tetrode equation for the entropy of an ideal
monatomic gas. The derivation starts with the multiplicity function

ΩN =
1

N !
V N

h3N

π3N/2

(
3N
2

)
!
(2mU)3N/2

. A few applications of the product and sum rules for logarithms and an couple applications of Stirling’s
Approximation, and we get the Sakur-Tetrode result:

S(U, V,N) = Nk

[
log

[
V

N

(
4πmU

3Nh2

)3/2
]

+
5
2

]
(69)

where m is the mass of a single atom in the gas.
It seems that most entropy calculations result in a leading term of Nk. This allows us to make a quick

estimate of the entropy of anything.
Example: Find the entropy of your textbook. Let’s say the book has a total mass of 1 kg. This is about 100

moles of carbon (why?) So, the number of particles making up the book is N ≈ NA × 100 ≈ 1026. Therefore,
the entropy of the book is approximately Nk = 103J/K. Exercise for the reader: calculate the entropy of your
roommate. Explain this calculation to your roommate.

11.1 Calculating Changes in Entropy

• Change in entropy when an ideal gas expands from V1 to V2 with N and U fixed:

∆S = Nk

[
log

[
V2

N

(
4πmU

3Nh2

)3/2
]

+
5
2

]
−Nk

[
log

[
V2

N

(
4πmU

3Nh2

)3/2
]

+
5
2

]
= Nk log

V2

V1

• Change in entropy when a monatomic ideal gas is heated from T1 to T2 at constant V,N : Here, we need
to use U = (3/2)NkT for the energy of a monatomic ideal gas. We can rewrite the ST equation in terms
of T and compute ∆S:

∆S = Nk

[
log

[
V

N

(
4πm( 3

2NkT2)
3Nh2

)3/2
]

+
5
2

]
−Nk

[
log

[
V

N

(
4πm( 3

2NkT1)
3Nh2

)3/2
]

+
5
2

]
=

3
2
Nk log

T2

T1
.

• In many introductory textbooks, the entropy change for quasistatic, isothermal expansion of an ideal gas
is reported to be

∆S =
Q

T
Where does this come from? From the first example above, we know that the ∆S associated with a
quasistatic, isothermal expansion of an ideal gas is given by ∆S = kN log(V2/V1). The heat input during
an isothermal process is Q = −W (by the first law of thermodynamics). So,

Q = −W = +
∫ V2

V1

NkT

V
dV = NkT log

V2

V1

Comparing Q
T with the original calculation for ∆S, we see that they are identical → ∆S = Q/T for

an isothermal, quasistatic expansion (or compression). Note that this formula only applies to isothermal
processes. If you consider free expansion of a gas, then Q = 0 and ∆S &= Q/T .

• Change in entropy when 1 mol of air is heated from a temperature of 300K to 301K:

∆S =
3
2
Nk log

T2

T1
=

3
2
nR log

T2

T1
(70)

=
3
2
(1 mol)(8.31 J/mol-K) log

301
300

(71)

= 0.042 J/K (72)



11 ENTROPY 27

11.2 Entropy of a black hole

This is problem 2.42 on page 84 of the text. We went over in general in class. Here are the specifics of the
problem.

(a) By dimensional analysis, the radius must be proportional to GM/c2.

(b) Ordinarily, the entropy of a system is of the same order as the number of particles in the system. If
we take a system of N particles and compress it to form a black hole, the second law requires that when we’re
done, the entropy of the black hole is still at least of order N . But since the end result is the same whether we
start with a lot of particles or a few (with the same total mass), the final entropy must in fact be of the order
of the maximum N , the largest possible number of particles that it could have been formed from.

(c) Suppose we start with N photons, each of which has a wavelength equal to the size of the black hole:
λ = GM/c2. Each photon has an energy E = hc/λ, and the total energy of all of them must equal Mc2:

Mc2 = NE =
Nhc

λ
=

Nhc3

GM
.

Solving for N gives

N =
GM2

hc
,

and so the entropy in conventional units must be of order

S ∼ GM2k

hc
.

(d) For a one-solar mass black hole,

S

k
= 1.06x1077; S = 1.5x1054J/K.

This is an enormous entropy. For comparison, an ordinary star like the sun contains something like 1057

particles, so its entropy is something like 1057k. To equal the entropy of a single one-solar- mass black hole, you
would need 1020 ordinary stars or enough to populate a billion (109) Milky Way galaxies. Furthermore, since
the entropy of a black hole is proportional to the square of its mass, a million-solar mass black hole (as may
exist at the center of our galaxy) would have a trillion times the entropy of a one-solar-mass black hole.


