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5.1 Processes of Heat Transfer

There are three ways that a substance can transfer energy to its environment or two another substance:

• Radiation: transfer of heat through the emission of electromagnetic waves.

• Convection: transfer of heat through bulk motion of liquid or gas

• Conduction: transfer of heat by contact

5.2 Compression Work

The most common (therefore important) type of work we can do on a gas is to compress it. Consider a gas of
n moles in a cylinder of volume V with cross-sectional area A. A force can be applied to a piston which will
compress the gas. Eq. 1.25 in the text should read

dW = F • dr (38)

This is the amount of work done by the external forcing agent when the force F is applied to the piston through
a distance dr. We want to invoke the IGL here, but if the piston is pushed to quickly, the pressure in the gas
is undefined (pressure will be higher near the piston as the gas piles up near the rapidly moving piston during
compression). So, we imagine compressing the gas quasistatically. In quasi-static compression, the piston is
moved slowly such that the gas is always in equilibrium and the pressure is uniform and well-defined. This
amounts to ensuring that you push the piston at a speed less than the speed of sound in the gas.

Using F = PA in Eq. 1.25 in the text (Eq. 38 above) give

dW = −PAdr.

The (-) sign comes from our convention that the work must be positive when an external agent (the pushing
force) acts on the gas. Since dr < 0 for compression due to the applied force, the (-) sign in dW = −PAdr
ensures that our convention is upheld. Notice that Adr = dV . Integrating gives

W = −
∫

PdV (39)

This is an important relation that we will return to often. Eq. 39 is our starting point for all compression work
problems.

There are several interesting cases to consider in the application of Eq. 39.

• Isobaric Compression and Expansion:
If somehow, the pressure in the gas were constant (isobaric) during compression or expansion, we would
have:

Wisobaric = −P∆V. (40)

Draw an isobaric expansion of a gas from V1 to V2 on a PV diagram.

• Isochoric Compression and Expansion:
Isochoric refers to processes in which the volume does not change. Clearly, in this case, the work done is
zero (like the work done by someone pushing against an immobile wall).

Wisochoric = 0 (41)

Draw an isochoric expansion of a gas from V1 to V2 on a PV diagram.

• Isothermal Compression and Expansion:
Here the temperature is held constant by allowing heat to leave the cylinder during compression and
allowing heat to enter the cylinder during expansion. If the gas is described by the IGL, then we can
rewrite the pressure as P = NkT/V . Substituting this into Eq. 39, we have W = −NkT

∫
dV/V where

T is outside the integral because we have assumed an isothermal (constant temperature) process. So, the
work done in compressing or expanding a gas from V1 to V2 at constant temperature is

Wisothermal = −NkT ln
(

V2

V1

)
. (42)

Draw an isothermal expansion of a gas from V1 to V2 on a PV diagram.
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• Adiabatic Compression and Expansion
Adiabatic refers to a process in which no heat enters or leaves the system. In practice this might mean
that the compression or expansion occurs quickly enough so that heat does not have the time to escape
or enter the cylinder (yet still slowly enough to satisfy our quasi-static constraint). Referring to the First
Law of Thermodynamics (the one that defines thermal energy), ∆U = Q + W , we see that an adiabatic
process will be one in which the change in internal energy of the gas is entirely due to the work done on
the gas: Wadiabatic = ∆U

The change in internal energy is entirely thermal (work cannot affect rest energies, bond energies, etc.),
so

Wadiabatic = ∆Uthermal (43)

Draw an adiabatic expansion of a gas from V1 to V2 on a PV diagram.

A Simple Example of Computing Net Work Done in a Cycle of Expansion and Compression
Consider the cycle shown in the figure. (1) An ideal gas undergoes isochoric pressurization from P1 to P2

at the constant volume V1; (2) isobaric expansion from V1 to V2 at pressure P2; (3) isochoric de-pressurization
from P2 to P1 at volume V2; and (4) isobaric compression from V2 to V1. We would like to compute the work
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Figure 1: default

done in this cycle. We will do so by computing the work done along each of the paths (1-4).

• Path 1: Here there is no change in volume, so the work done W1 = 0.

• Path 2: Isobaric Expansion: W2 = −P2∆V = −P2(V2 − V1) < 0. The gas has done work on the
environment in pushing against the piston (W < 0).

• Path 3: No change in volume, so the work W3 = 0.

• Path 4: Isobaric Compression: W4 = −P1∆V = −P1(V1 − V2) > 0. The gas has been compressed by the
piston, so the external agent has done work on the gas (W > 0).

The net work done by (on?) the gas is then W1 + W2 + W3 + W4. Summing the above contributions, we
find

Wnet = −P2(V2 − V1) +−P1(V1 − V2) = (P1 − P2)× (V2 − V1) < 0 (44)

The total work done is negative meaning, according to our convention, that the gas has performed work on the
environment. This is the basis of all heat engines (e.g., internal combustion engine).

An important Observation:
Compare the area enclosed in the cycle with the net work that we’ve just calculated. This is a general re-

sult for PV cycles!

Now Compute the Change in Internal Energy of the Gas in this Cycle
The total Thermal energy at any point in the cycle depends only on the temperature: Uthermal = f

2 NkT .
The temperature at each point can be obtained from the ideal gas law PV = NkT . It is a worthwhile exercise
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to compute the change in internal energy along each leg of the cycle. You will find a general result for all closed
cycles on a PV diagram:

∆Uthermal = 0 around any closed cycle on the PV diagram (45)

Finally, what is the net heat added (removed?) from the gas? Hint: First Law of Thermo!
We will return to engine cycles in a subsequent chapter.

5.3 The Adiabatic Exponent

The text (p.25-26) derives some useful relations for adiabatic processes in an ideal gas. You can check the text
for the derivation, but you should be aware of these important adiabatic relations:

V T f/2 = constant (46)

and
V γP = constant, where γ ≡ f + 2

f
(47)

γ is called the adiabatic exponent.
Example: Consider the adiabatic expansion of an ideal gas from V1 to V2 = 2V1. In case (a), we take the gas

to be monatomic (f = 3). In case (b), we take the gas to be diatomic with rotational modes available (f = 5).
Which case will result in the greatest drop in pressure if both gases start at the same pressure P1?

From the above adiabatic relations, we that P2/P1 = (V1/V2)γ . We know that V1/V2 = 1/2, and so we find
that for case (a), P2/P1 = 0.315, while, for case (b), we have P2/P1 = 0.379. The monatomic gas will experience
a greater pressure drop than the diatomic gas. Does this make sense? Can you see why this must be true?

5.4 Getting Started on Problem 1.40

We know that temperature through the troposphere (bottom-most 10-15 km of atmosphere) decreases linearly
with altitude z. If the temperature gradient |dT/dz| in this region exceeds a certain critical value, then a rising
mass of air will experience convection: the surrounding atmosphere is cooling faster than the rising air mass
so the air mass remains warmer at all times than the surrounding atmosphere. Problem 1.40(a) asks you to
consider the adiabatic expansion of an air mass as it rises. Picture a slab of air (like we did in problem 1.16)
that is subject to the IGL. The pressure in the air parcel is P = nRT/V . For adiabatic expansion, we have

V T f/2 = constant→ 1
V

=
T f/2

constant
. (48)

So, the pressure in the air parcel is given by

P =
nRT (f+2)/2

constant
This is an equation of state for the air parcel as it adiabatically expands. We can easily find the desired relation
for dT/dP by first computing dP/dT and recognizing that T and P are well behaved functions so its ok to
invert dP/dT to get dT/dP . The result is

dT

dP
=

2
f + 2

T

P
(49)

6 Heat Capacities and Specific Heats

The heat capacity of a substance is the amount of heat that you need to give the substance to raise its
temperature through a given ∆T . Clearly you need to add more heat to an ocean to raise its temperature by
5 ◦C than you need to add to a cup of saltwater to raise its temperature by the same amount. Therefore heat
capacity (C) depends on the amount of the substance in question, and is less of a useful measure than the
related concept of specific heat.

The specific heat (c) of a substance is the heat capacity per unit mass. In terms of the specific heat, the
amount of heat Q needed to raise the temperature by ∆T of a mass m of a substance with specific heat c is:

Q = mc∆T (50)

Your text points out that this is an ambiguous definition: from the 1st Law, we know that Q = ∆U −W .
Therefore, we expect that the specific heat is given by c = (∆U −W )/m∆T . So, specific heat can be affected
by
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• the internal energy U which in turn, depends on f (the number of quadratic degrees of freedom enjoyed
by the molecule),

• the work W done on or by the gas.

To remove the ambiguity, we recognize two cases:

constant volume heat capacity
In the first case, we consider processes in which the volume of the substance is held constant. In this case,

the work done on/by the substance is zero since W = −
∫

PdV . The heat capacity in this case is called the
”heat capacity at constant volume and is abbreviated CV . Likewise, the specific heat at constant volume is
abbreviated cV . Since W = 0, we must have

CV =
(

∂U

∂T

)

V

(51)

where the V subscript on the partial derivative means that the derivative is evaluated for fixed volume. As an
example, the specific heat at constant volume for liquid water is 4.2 J/gram-◦C. It takes 4.2 joules or 1 calorie
to raise the temperature of 1 gram of liquid water by one degree Celsius.

constant pressure heat capacity Often, things expand when heated, so that work is done on the envi-
ronment by the substance during expansion (W < 0 and C > CV ). In such a case, the constant volume specific
heat or heat capacity is not a useful measure. Instead, we consider the other case that can be easily calculated
- constant pressure. If P is held fixed, the work done W = −

∫
PdV is simply −P∆V . So, the heat capacity at

constant pressure is

CP =
(

∆U − (−P∆V )
∆T

)

P

Taking the appropriate limit, we have the final expression for the heat capacity at constant pressure

CP =
(

∂U

∂T

)

P

+ P

(
∂V

∂T

)

P

(52)

The second term above is the heat needed to compensate for energy lost through work done on the environment.
This is usually small as we will see.

heat capacities of solids and gasses
We know that for ”classical solids and gasses” (ignoring quantum effects at very low temperatures), the

internal energy U is just

U =
1
2
NfkT.

Therefore, CV = (1/2)Nfk is (a) a constant, and (b) a useful way to measure f and thereby learn something
about the type of molecule comprising the gas or solid.

• Monatomic Gas:
f = 3⇒ CV =

3
2
Nk =

3
2
nR (53)

• Diatomic Gas (room temperature so rotations are present, but no vibrations):

f = 5⇒ CV =
5
2
Nk =

5
2
nR (54)

• Solid:
f = 6⇒ CV = 3Nk = 3nR (55)

The last example above (that the heat capacity of a solid is just 3nR is a famous experimental result
known as the Dulong-Petit Heat Capacity.

6.1 Relationship between CP and CV

For an ideal gas, (
∂U

∂T

)

P

=
(

∂U

∂T

)

V
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Why? Because U only depends on T . Therefore,

CP = CV + P

(
∂V

∂T

)

P

which can be simplified using the IGL expression V = nRT/P :

CP = CV + nR (56)

This is a nice, simple result that we would not have guessed at - the difference between the constant pressure
heat capacity and the constant volume heat capacity for an ideal gas is proportional to the number of moles of
gas present.

6.2 A simple example application

This is really more of a PHYS 203 problem, so you should have seen this before: Consider a mass m1 = 200 g
of coffee at temperature T1 = 90◦C in an insulated (styrofoam or the like) cup. Now add a mass m2 = 10 g of
cream at a temperature of T2 = 20◦C. Since coffee and cream are both mostly water their specific heats are
the same as water. What is the final temperature TF of the mixture of cream and coffee?

Since the cup is insulated, there is no heat exchanged with the outside world. ∆Q = ∆Qcoffee+∆Qcream =
0:

0 = ∆Qcoffee + ∆Qcream
= m1c∆T1 + m2c∆T2

= m1c(TF − T1) + m2c(TF − T2)

Solving for TF , we find

TF =
m1T1 + m2T2

m1 + m2
=

(200)(90) + (10)(20)
210

= 86.7◦C

7 Latent Heats of Transformation

This is the subject of phase transformations - the change in state from one phase to another such as the
transformation from a solid to a liquid, liquid to a vapor, or from an insulator to a superconductor.

In the first couple examples above (melting and evaporation), there is a latent heat associated with the phase
transformation. Latent means ”hidden” in the following sense. As water ice is warmed it absorbs heat from its
environment. Its temperature increases according to Q = mcice∆T . The effect of this heat is not hidden - it is
manifest in the temperature increase. However, something funny happens when the ice warms to a temperature
of 0◦C. Additional heat added to the ice does not result in an increase in the temperature of the ice. This heat
is ”hidden” or latent. Instead, the latent heat goes into breaking molecular bonds that hold the water molecules
together in the ice lattice. A phase transition is characterized by a latent heat required to change
the state of the substance while the temperature remains constant.

Latent Heats:
Process L(J/kg)
Ice melting 3.3× 105

Water Vaporizing 2.26× 106

7.1 Vaporization of Water

How much energy is needed to vaporize a cup (200 grams) of water at room temperature? There are two processes
here: (1) raising the temperature from T0 to Tv requires an amount of heat Q1 = mc∆T ; (2) vaporizing the
water at Tv requires an amount of heat Q2 = mLv.

• Raising the temperature to the boiling point:

Q1 = mc∆T = (0.2 kg)(4186J/kg◦C)(100◦C − 20◦C) = 6.7× 104 J (57)
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• Vaporizing the water at Tv:

Q2 = mLv = (0.2 kg)(2.26× 106J/kg) = 4.52× 105 J (58)

The total energy needed is then Q1 + Q2 = 5.19× 105 J.
If a 600W microwave oven could dump all of its energy into the cup of water (100% efficiency), how long

would it take to vaporize the water in the cup?

∆t =
Q

P
=

5.19× 105 J
600 J/s

= 8.65× 102 sec. ≈ 14 minutes (59)

7.2 Snow Melting Example

In December, solar intensity (during the day) is about 80W/m2 in Chicago. Let us say that the ground is
covered by a layer of snow 5 cm deep. The snow is 50% air and 50% water. How long will it take this snow
layer to melt assuming the air and surface temperature is near 0◦C? Snow is known to reflect about 90% of the
incident energy from the sun, so only 10% of the solar insolation can go into the heat of fusion.

Consider a patch of snow 1m2 in area and 5 cm deep. The volume of this patch is 0.05 m3. The volume of
ice contained in the patch is 0.025 m3. The mass of ice is thus m = ρiceVice = (1000kg/m3)(0.025m3) = 25kg.

The heat required to melt the ice is:

Q = mLf = (25 kg)(3.3× 106 J/kg) = 8.3× 106 J (60)

Let us assume that the sun shines for about 8 hours per day in December, in Chicago. The average solar power
delivered to the snow patch is then

P =
8
24

80 W = 26.6 W

The time required to completely melt the snow is

∆t =
Q

P
=

8.3× 106 J
26.6 W

= 3.12× 105 seconds = 3.6 days

Does this make sense in terms of your memory of snow disappearing from the ground even though both the
surface and air are colder than 0 ◦C? What other processes have been neglected in this analysis? Will these
processes contribute significantly to the time?

7.3 Physics of Endurance Athletes

When we come back to classical thermodynamics in chapter 5 to learn about thermodynamic efficiencies, we’ll
be able to really tackle problems like the following with more rigor. For now, we know just enough to be
dangerous. So, let’s see what we can say about the thermodynamics of running.

In order to run (or swim or bike...) your body must convert fat and glycogen into energy. As we will see
in chapter 5, this conversion is very inefficient. Only about 10-12% of the food energy is transformed into
mechanical energy. The remainder is dissipated as heat. The blood carries the heat to the skin to dissipate it
through evaporation and perspiration. On the surface, this seems terribly inefficient. However, all heat engines
are limited to a maximum theoretical efficiency and the body is no different. Yet, the body could in principle
be more efficient - converting more of the available energy to mechanical work. Instead, the body does some
very clever things with the waste heat, without which endurance sports of most kinds would not be possible.

We know from a previous class that the body radiates energy according to the Stefan Boltzmann radiation
law P = eσAT 4 given a core body temperature of 98.6◦F and a typical surface area A for an adult, this radiated
power is on the order of 100 W. This is your resting metabolism (basal metabolic rate) - the rate at which your
body loses energy through radiation when it does nothing but sit and maintain respiration and basic brain
activity. When you do thermodynamics homework, your radiated output is actually measurably higher than
this base rate because of the extra clock cycles used by your brain. Implication: You can lose weight by thinking
alone! But don’t think alone. Find a thinking partner to spot you.

Consider a 150 lb distance runner burning glycogen and fat according to the table below for a 7.5 mph
pace. The hydrogen atoms in the fat molecule are transferred to oxygen to form water. The runner consumes
energy at a rate of 423 Cal per 30 minutes or about 984 Watts (do this conversion yourself). Where does
this energy go? As we’ve discussed only about 10-12% of the available energy goes into mechanical motion
(overcoming air resistance to maintain a constant speed). 10% of 984 W is 98.4W. The remainder - 886 W is
used to heat and evaporate water through perspiration on the skin. At what rate is the water evaporated? This
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is the rate at which the athlete must take in water during the run. The evaporation rate depends on a variety
of environmental conditions such as air temperature, humidity, wind speed, etc. However, we can make some
back-of-the-envelope estimates to get a ball-park figure for the evaporation rate using the basic thermodynamics
we’ve developed. There are two processes:

• the water is heated from its initial temperature to the final temperature of the body. Assume that the
water is initially at room temperature: ∆T = 37− 21◦C = 16◦C. The required energy to accomplish this
is:

Q1 = mc∆T

• the heated water is evaporated:
Q2 = mLv

The total heat require is Q1 + Q2 = m(c∆T + Lv). The latent heat of evaporation at T = 37◦C is
Lv = 2.42× 106J/kg.

Setting Q1 + Q2 equal to the 984 J, we can solve for the mass of water that is evaporated per second:

m =
Q1 + Q2

c∆T + Lv)
=

984J/s

(4186J/kg)(16◦C) + 2.42× 106J/kg
= 4× 10−4kg/s

So, in one hour, this runner loses 1.4 kg of water to evaporation - around 1.4 liters or 47 fluid ounces! Note
that most of the energy goes toward the evaporation process. The heating from room temperature to body
temperature requires a comparatively tiny fraction of the energy used.

As anyone who has run in the heat of the summer knows, high ambient temperatures and humidity can seri-
ously interfere with your ability to remove excess heat through perspiration. Recall that conduction transport is
proportional to the temperature difference between the body and the environment. As the ambient temperature
approaches 37 ◦C, the conduction rate goes to zero. As the humidity of the air increases, the partial pressure
of water increases which inhibits evaporation of water from the skin - the skin and air approach an evaporative
equilibrium where just as much water is condensed onto the skin as evaporates from the skin. The net effect of
these inhibitory processes is that the body retains the excess heat generated and the internal body temperature
rises. Humans have an exceedingly narrow range of survivable core temperatures, so such an increase due to
the 984 W of excess power now dumped into the body can quickly result in serious injury or death, particularly
to children for whom the lower ratio of skin surface to body weight results in less efficient cooling in general.

Modeling that 150 lb runner as a bag of liquid water at a temperature of 37 ◦C calculate the time it takes
to raise the temperature of the body by 1 ◦C due to a Q/t = 984W .

mc∆T

∆t
= 984J/sec⇒ ∆t =

mc∆T

984W
=

(75kg)(4186J/kg◦C)(1◦C)
984J/s

= 319sec ≈ 5.3 minutes.

Moral of the story: Athletes in endurance sports can quickly get into trouble with overheating or under hydra-
tion.
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Energy Demands of Physical Activities 
 

Activity Calories/ 
lb./min. 

Calories burned during 30 minutes of activity  
at various body weights 

  110 lb. 125 lb. 150 lb. 175 lb. 200 lb. 
Aerobic dance 
(vigorous) 

0.062 204 234 279 327 372 

Basketball 
(vigorous/full crt.) 

0.097 321 363 438 510 582 

Bicycling 
     13 mph 
     19 mph 
     25 mph 

 
0.045 
0.076 
0.139 

 
150 
252 
459 

 
168 
285 
522 

 
204 
342 
627 

 
237 
399 
729 

 
270 
456 
834 

 
Golf  
(carrying clubs) 

0.045 150 168 204 
 

237 270 

Rowing  
(vigorous) 

0.097 321 363 438 510 582 

Running 
     5 mph 
     7.5 mph 
     10 mph 

 
0.061 
0.094 
0.114 

 
201 
309 
375 

 
228 
354 
429 

 
276 
423 
513 

 
321 
492 
600 

 
366 
564 
687 

 
Studying 0.011 36 42 51 57 66 
Swimming 
     20 yd./min. 
     45 yd./min. 
     50 yr./min. 

 
0.032 
0.058 
0.070 

 
105 
192 
231 

 
120 
219 
264 

 
144 
261 
315 

 
168 
306 
369 

 
192 
348 
420 

 
Tennis 
(beginner) 

0.032 105 120 144 168 192 

Walking 
(briskly) 
     3.5 mph 
     4.5 mph 

 
0.035 
0.048 

 
117 
159 

 
132 
180 

 
156 
216 

 
183 
252 

 
210 
288 

Weight Lifting 
     Light-Moderate 
     vigorous 

 
0.023 
0.045 

 
76 
149 

 
86 

169 

 
104 
203 

 
121 
236 

 
138 
270 

 
 

Figure 2: default


