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3.2 Ideal Gas Law is An Approximation to Real Gas Behavior

The ideal gas law can be derived from the kinetic theory of gases and relies on the assumptions that (1) the gas
consists of a large number of molecules, which are in random motion and obey Newton’s laws of motion; (2)
the volume of the molecules is negligibly small compared to the volume occupied by the gas; and (3) no forces
act on the molecules except during elastic collisions of negligible duration. (Encyclopedia Brittanica). Usually
these constraints limit us to studying dilute atomic or simple molecular gases at low temperatures.

3.3 Simple Applications of the IGL

How many molecules of nitrogen are in the room right now? How many oxygen molecules? The total number
of molecules in the room right now is

N =
PV

kT
(12)

Now make some assumptions about P , V , and T : P = 105Pa (Standard Atmospheric Pressure), V =
5m × 4m × 3m = 60m3, and the temperature is T = 300K. So, N = 1.5 × 1027. 78% are N2 molecules
(1.1× 1027) and the rest (3.2× 1026) are O2 molecules.

3.4 Another IGL Example Problem

Before the recent Helium Scarcity (they mine it from the Sun, right?), restaurants would freely give away helium
balloons to my kids who would then free them to the sky upon leaving the restaurant. We would make a game
of seeing how long we could track them before they disappeared. The thing is that, eventually, the balloons will
pop due to the expansion driven by the reduced atmospheric pressure. The question is, ”How high does the
balloon get in the sky before it pops?” and is it possible to see it at this altitude? Have you ever seen a helium
balloon pop in the sky? Me neither.

I don’t really know if this is accurate or not, but let’s imagine that a fully inflated helium balloon will burst
when its volume increases by 10%. Further let’s make tha faulty assumption that the atmospheric temperature
is constant during the balloon’s voyage. We can correct mistake for this later. Right now, we’re just doing the
spherical-cow thing, so, moo along...

Referring to the diagram on the board, let’s label the initial pressure of the balloon’s environment (not the
pressure inside the balloon!) as P0 and the final atmospheric pressure (where the balloon pops) as P . Let’s
label the balloon’s initial pressure as P1 and the balloon’s final pressure as P2. The balloon’s initial and final
volumes will be V1 and V2. Considering just the equation of state for the balloon, we have

P1V1 = NkT and P2V2 = NkT (13)

Therefore,
P1V1 = P2V2 (14)

Since V2 = 1.1V1, we have
P1

P2
= 1.1 (15)

The result of Problem 1.16c is that the atmospheric pressure varies with height z according to

P (z) = P0e
−mg

kT z (16)

where m is the average mass of an ”air molecule”:

m ≈ 0.78mN2 + 0.22mO2 = [0.78(28) + 0.22(32)]× 1.67× 10−27kg = 4.82× 10−27kg (17)

The pressures must satisfy P0/P = P1/P2. So that we have

1.1 = e
mg
kT z, (18)

or ln(1.1) = mgz/kT . Finally, solve for z to get the height at which the balloon bursts:

z =
kT

mg
ln(1.1) = 835m ≈ 2500ft (19)

Can we see the balloon at this altitude? Recall some optics: The angular size of the balloon at this distance is
given by theta ≈ D where d is the diameter of the balloon and D is the distance from the eye. So, the angular



4 RELATION BETWEEN IDEAL GAS LAW AND NEWTONIAN MECHANICS: EQUIPARTITION THEOREM6

size of a d = 20 cm diameter balloon in the sky when it bursts is roughly θ = 0.2/835 = 2.4× 10−4 radians or
about 0.01◦.

A good rule of thumb is that the minimum angular size that we can resolve using a pupil of diameter dpupil
is

θmin = 1.22
λ

dpupil
(20)

where both λ and dpupil must be measured in cm. For sunlight with an average wavelength of 5000 A = 5×10−5
cm using an average human eye pupil of diameter 3 mm = 0.3 cm, we find θmin = 1.22 × 5.0 × 10−5/0.3 =
2.0× 10−4 radians. Our balloon is just under the ideal theoretical limit of resolution for the perfect pupil when
it pops. So, while it is possible for the perfect eye to catch the pop, it will never be seen by the unaided,
imperfect eye!

3.5 Ideal Gas Law Applied to the Solar Corona

The solar corona is a dilute gas of charged particles at a temperature of T = 2.0 × 106K and a pressure of
P = 0.03 Pa. What is the coronal density (#/m3). The number density is N/V . By the ideal gas law, the ratio
N/V is

N

V
=

P

kT
(21)

Plugging numbers in, we have

N

V
=

0.03Pa

(1.38× 10−23J/K)(2× 106K)
= 1.09× 1015m−3 (22)

Let’s compare this to the typical number density of molecules in this room where the pressure is P = 1atm =
1.01× 105Pa and the temperature is T = 300K. The number density of molecules in the room is then

N

V
=

1.01× 105Pa

(1.38× 10−23J/K)(300K)
= 2.43× 1025m−3 (23)

The particle density in this room is 10 orders of magnitude higher than in the solar corona!

4 Relation between Ideal Gas Law and Newtonian Mechanics: Equipar-
tition Theorem

Consider a gas consisting of a single particle of mass m bounding around in a box of volume V = L3. I would
like to know how the temperature of this ”gas” is related to the kinetic energy of the particle. Consider that
the particle is initially moving with a velocity v with x-component vx. The pressure exerted by the particle on
the wall at x = L in a collision with that wall is

P =
Fx

A
(24)

with A = L2 the area of the wall. By Newton’s third law, the force exerted on the wall, Fx is equal and opposite
to the force exerted on the particle by the wall. So, by Newton’s second law, we have:

P = −
m∆vx

∆t

A
(25)

We are free to average the acceleration ∆vx
∆t over any appropriate interval. Since nothing happens to particle

except at the walls, let’s choose the time interval ∆t to correspond to the time taken by the particle in one
round trip from the left wall to the right wall and back to the left wall. This time is ∆t = 2L/vx. The change
in vx in this time interval is ∆vx = −2vx. Prove this important point!

Therefore, the average pressure exerted during one collision with the right wall is

P̄ = −
m −2vx

(2L/vx)

A
=

m

V
v2

x (26)

where V = AL.


